/* * Symbol lookup and handling. * * Copyright (C) 2003 Transmeta Corp. * 2003-2004 Linus Torvalds * * Licensed under the Open Software License version 1.1 */ #include #include #include #include "lib.h" #include "allocate.h" #include "token.h" #include "parse.h" #include "symbol.h" #include "scope.h" #include "expression.h" #include "target.h" /* * Secondary symbol list for stuff that needs to be output because it * was used. */ struct symbol_list *translation_unit_used_list = NULL; /* * If the symbol is an inline symbol, add it to the list of symbols to parse */ void access_symbol(struct symbol *sym) { if (sym->ctype.modifiers & MOD_INLINE) { if (!(sym->ctype.modifiers & MOD_ACCESSED)) { add_symbol(&translation_unit_used_list, sym); sym->ctype.modifiers |= MOD_ACCESSED; } } } struct symbol *lookup_symbol(struct ident *ident, enum namespace ns) { struct symbol *sym; for (sym = ident->symbols; sym; sym = sym->next_id) { if (sym->namespace & ns) { sym->used = 1; return sym; } } return NULL; } struct context *alloc_context(void) { return __alloc_context(0); } struct symbol *alloc_symbol(struct position pos, int type) { struct symbol *sym = __alloc_symbol(0); sym->type = type; sym->pos = pos; sym->endpos.type = 0; return sym; } struct struct_union_info { unsigned long max_align; unsigned long bit_size; int align_size; }; /* * Unions are fairly easy to lay out ;) */ static void lay_out_union(struct symbol *sym, struct struct_union_info *info) { examine_symbol_type(sym); // Unnamed bitfields do not affect alignment. if (sym->ident || !is_bitfield_type(sym)) { if (sym->ctype.alignment > info->max_align) info->max_align = sym->ctype.alignment; } if (sym->bit_size > info->bit_size) info->bit_size = sym->bit_size; sym->offset = 0; } static int bitfield_base_size(struct symbol *sym) { if (sym->type == SYM_NODE) sym = sym->ctype.base_type; if (sym->type == SYM_BITFIELD) sym = sym->ctype.base_type; return sym->bit_size; } /* * Structures are a bit more interesting to lay out */ static void lay_out_struct(struct symbol *sym, struct struct_union_info *info) { unsigned long bit_size, align_bit_mask; int base_size; examine_symbol_type(sym); // Unnamed bitfields do not affect alignment. if (sym->ident || !is_bitfield_type(sym)) { if (sym->ctype.alignment > info->max_align) info->max_align = sym->ctype.alignment; } bit_size = info->bit_size; base_size = sym->bit_size; /* * Unsized arrays cause us to not align the resulting * structure size */ if (base_size < 0) { info->align_size = 0; base_size = 0; } align_bit_mask = bytes_to_bits(sym->ctype.alignment) - 1; /* * Bitfields have some very special rules.. */ if (is_bitfield_type (sym)) { unsigned long bit_offset = bit_size & align_bit_mask; int room = bitfield_base_size(sym) - bit_offset; // Zero-width fields just fill up the unit. int width = base_size ? : (bit_offset ? room : 0); if (width > room) { bit_size = (bit_size + align_bit_mask) & ~align_bit_mask; bit_offset = 0; } sym->offset = bits_to_bytes(bit_size - bit_offset); sym->bit_offset = bit_offset; sym->ctype.base_type->bit_offset = bit_offset; info->bit_size = bit_size + width; // warning (sym->pos, "bitfield: offset=%d:%d size=:%d", sym->offset, sym->bit_offset, width); return; } /* * Otherwise, just align it right and add it up.. */ bit_size = (bit_size + align_bit_mask) & ~align_bit_mask; sym->offset = bits_to_bytes(bit_size); info->bit_size = bit_size + base_size; // warning (sym->pos, "regular: offset=%d", sym->offset); } static struct symbol * examine_struct_union_type(struct symbol *sym, int advance) { struct struct_union_info info = { .max_align = 1, .bit_size = 0, .align_size = 1 }; unsigned long bit_size, bit_align; void (*fn)(struct symbol *, struct struct_union_info *); struct symbol *member; fn = advance ? lay_out_struct : lay_out_union; FOR_EACH_PTR(sym->symbol_list, member) { fn(member, &info); } END_FOR_EACH_PTR(member); if (!sym->ctype.alignment) sym->ctype.alignment = info.max_align; bit_size = info.bit_size; if (info.align_size) { bit_align = bytes_to_bits(sym->ctype.alignment)-1; bit_size = (bit_size + bit_align) & ~bit_align; } sym->bit_size = bit_size; return sym; } static struct symbol *examine_base_type(struct symbol *sym) { struct symbol *base_type; /* Check the base type */ base_type = examine_symbol_type(sym->ctype.base_type); if (!base_type || base_type->type == SYM_PTR) return base_type; sym->ctype.as |= base_type->ctype.as; sym->ctype.modifiers |= base_type->ctype.modifiers & MOD_PTRINHERIT; concat_ptr_list((struct ptr_list *)base_type->ctype.contexts, (struct ptr_list **)&sym->ctype.contexts); if (base_type->type == SYM_NODE) { base_type = base_type->ctype.base_type; sym->ctype.base_type = base_type; } return base_type; } static struct symbol * examine_array_type(struct symbol *sym) { struct symbol *base_type = examine_base_type(sym); unsigned long bit_size, alignment; if (!base_type) return sym; bit_size = base_type->bit_size * get_expression_value(sym->array_size); if (!sym->array_size || sym->array_size->type != EXPR_VALUE) bit_size = -1; alignment = base_type->ctype.alignment; if (!sym->ctype.alignment) sym->ctype.alignment = alignment; sym->bit_size = bit_size; return sym; } static struct symbol *examine_bitfield_type(struct symbol *sym) { struct symbol *base_type = examine_base_type(sym); unsigned long bit_size, alignment, modifiers; if (!base_type) return sym; bit_size = base_type->bit_size; if (sym->bit_size > bit_size) warning(sym->pos, "impossible field-width, %d, for this type", sym->bit_size); alignment = base_type->ctype.alignment; if (!sym->ctype.alignment) sym->ctype.alignment = alignment; modifiers = base_type->ctype.modifiers; /* Bitfields are unsigned, unless the base type was explicitly signed */ if (!(modifiers & MOD_EXPLICITLY_SIGNED)) modifiers = (modifiers & ~MOD_SIGNED) | MOD_UNSIGNED; sym->ctype.modifiers |= modifiers & MOD_SIGNEDNESS; return sym; } /* * "typeof" will have to merge the types together */ void merge_type(struct symbol *sym, struct symbol *base_type) { sym->ctype.as |= base_type->ctype.as; sym->ctype.modifiers |= (base_type->ctype.modifiers & ~MOD_STORAGE); concat_ptr_list((struct ptr_list *)base_type->ctype.contexts, (struct ptr_list **)&sym->ctype.contexts); sym->ctype.base_type = base_type->ctype.base_type; if (sym->ctype.base_type->type == SYM_NODE) merge_type(sym, sym->ctype.base_type); } static int count_array_initializer(struct symbol *t, struct expression *expr) { int nr = 0; int is_char = 0; /* * Arrays of character types are special; they can be initialized by * string literal _or_ by string literal in braces. The latter means * that with T x[] = {} number of elements in x depends * on T - if it's a character type, we get the length of string literal * (including NUL), otherwise we have one element here. */ if (t->ctype.base_type == &int_type && t->ctype.modifiers & MOD_CHAR) is_char = 1; switch (expr->type) { case EXPR_INITIALIZER: { struct expression *entry; int count = 0; int str_len = 0; FOR_EACH_PTR(expr->expr_list, entry) { count++; switch (entry->type) { case EXPR_INDEX: if (entry->idx_to >= nr) nr = entry->idx_to+1; break; case EXPR_STRING: if (is_char) str_len = entry->string->length; default: nr++; } } END_FOR_EACH_PTR(entry); if (count == 1 && str_len) nr = str_len; break; } case EXPR_STRING: if (is_char) nr = expr->string->length; default: break; } return nr; } static struct symbol * examine_node_type(struct symbol *sym) { struct symbol *base_type = examine_base_type(sym); int bit_size; unsigned long alignment, modifiers; /* SYM_NODE - figure out what the type of the node was.. */ modifiers = sym->ctype.modifiers; bit_size = 0; alignment = 0; if (!base_type) return sym; bit_size = base_type->bit_size; alignment = base_type->ctype.alignment; /* Pick up signedness information into the node */ sym->ctype.modifiers |= (MOD_SIGNEDNESS & base_type->ctype.modifiers); if (!sym->ctype.alignment) sym->ctype.alignment = alignment; /* Unsized array? The size might come from the initializer.. */ if (bit_size < 0 && base_type->type == SYM_ARRAY && sym->initializer) { struct symbol *node_type = base_type->ctype.base_type; int count = count_array_initializer(node_type, sym->initializer); if (node_type && node_type->bit_size >= 0) bit_size = node_type->bit_size * count; } sym->bit_size = bit_size; return sym; } static struct symbol *examine_enum_type(struct symbol *sym) { struct symbol *base_type = examine_base_type(sym); sym->ctype.modifiers |= (base_type->ctype.modifiers & MOD_SIGNEDNESS); sym->bit_size = bits_in_enum; if (base_type->bit_size > sym->bit_size) sym->bit_size = base_type->bit_size; sym->ctype.alignment = enum_alignment; if (base_type->ctype.alignment > sym->ctype.alignment) sym->ctype.alignment = base_type->ctype.alignment; return sym; } static struct symbol *examine_pointer_type(struct symbol *sym) { /* * We need to set the pointer size first, and * examine the thing we point to only afterwards. * That's because this pointer type may end up * being needed for the base type size evaluation. */ if (!sym->bit_size) sym->bit_size = bits_in_pointer; if (!sym->ctype.alignment) sym->ctype.alignment = pointer_alignment; return sym; } /* * Fill in type size and alignment information for * regular SYM_TYPE things. */ struct symbol *examine_symbol_type(struct symbol * sym) { if (!sym) return sym; /* Already done? */ if (sym->examined) return sym; sym->examined = 1; switch (sym->type) { case SYM_FN: case SYM_NODE: return examine_node_type(sym); case SYM_ARRAY: return examine_array_type(sym); case SYM_STRUCT: return examine_struct_union_type(sym, 1); case SYM_UNION: return examine_struct_union_type(sym, 0); case SYM_PTR: return examine_pointer_type(sym); case SYM_ENUM: return examine_enum_type(sym); case SYM_BITFIELD: return examine_bitfield_type(sym); case SYM_BASETYPE: /* Size and alignment had better already be set up */ return sym; case SYM_TYPEOF: { struct symbol *base = evaluate_expression(sym->initializer); if (base) { if (is_bitfield_type(base)) warning(base->pos, "typeof applied to bitfield type"); if (base->type == SYM_NODE) base = base->ctype.base_type; sym->type = SYM_NODE; sym->ctype.modifiers = 0; sym->ctype.base_type = base; return examine_node_type(sym); } break; } case SYM_PREPROCESSOR: sparse_error(sym->pos, "ctype on preprocessor command? (%s)", show_ident(sym->ident)); return NULL; case SYM_UNINITIALIZED: sparse_error(sym->pos, "ctype on uninitialized symbol %p", sym); return NULL; case SYM_RESTRICT: examine_base_type(sym); return sym; case SYM_FOULED: examine_base_type(sym); return sym; default: sparse_error(sym->pos, "Examining unknown symbol type %d", sym->type); break; } return sym; } const char* get_type_name(enum type type) { const char *type_lookup[] = { [SYM_UNINITIALIZED] = "uninitialized", [SYM_PREPROCESSOR] = "preprocessor", [SYM_BASETYPE] = "basetype", [SYM_NODE] = "node", [SYM_PTR] = "pointer", [SYM_FN] = "function", [SYM_ARRAY] = "array", [SYM_STRUCT] = "struct", [SYM_UNION] = "union", [SYM_ENUM] = "enum", [SYM_TYPEDEF] = "typedef", [SYM_TYPEOF] = "typeof", [SYM_MEMBER] = "member", [SYM_BITFIELD] = "bitfield", [SYM_LABEL] = "label", [SYM_RESTRICT] = "restrict", [SYM_FOULED] = "fouled", [SYM_KEYWORD] = "keyword", [SYM_BAD] = "bad"}; if (type <= SYM_BAD) return type_lookup[type]; else return NULL; } struct symbol *examine_pointer_target(struct symbol *sym) { return examine_base_type(sym); } static struct symbol_list *restr, *fouled; void create_fouled(struct symbol *type) { if (type->bit_size < bits_in_int) { struct symbol *new = alloc_symbol(type->pos, type->type); *new = *type; new->bit_size = bits_in_int; new->type = SYM_FOULED; new->ctype.base_type = type; add_symbol(&restr, type); add_symbol(&fouled, new); } } struct symbol *befoul(struct symbol *type) { struct symbol *t1, *t2; while (type->type == SYM_NODE) type = type->ctype.base_type; PREPARE_PTR_LIST(restr, t1); PREPARE_PTR_LIST(fouled, t2); for (;;) { if (t1 == type) return t2; if (!t1) break; NEXT_PTR_LIST(t1); NEXT_PTR_LIST(t2); } FINISH_PTR_LIST(t2); FINISH_PTR_LIST(t1); return NULL; } void check_declaration(struct symbol *sym) { int warned = 0; struct symbol *next = sym; while ((next = next->next_id) != NULL) { if (next->namespace != sym->namespace) continue; if (sym->scope == next->scope) { sym->same_symbol = next; return; } if (sym->ctype.modifiers & next->ctype.modifiers & MOD_EXTERN) { if ((sym->ctype.modifiers ^ next->ctype.modifiers) & MOD_INLINE) continue; sym->same_symbol = next; return; } if (!Wshadow || warned) continue; if (get_sym_type(next) == SYM_FN) continue; warned = 1; warning(sym->pos, "symbol '%s' shadows an earlier one", show_ident(sym->ident)); info(next->pos, "originally declared here"); } } void bind_symbol(struct symbol *sym, struct ident *ident, enum namespace ns) { struct scope *scope; if (sym->bound) { sparse_error(sym->pos, "internal error: symbol type already bound"); return; } if (ident->reserved && (ns & (NS_TYPEDEF | NS_STRUCT | NS_LABEL | NS_SYMBOL))) { sparse_error(sym->pos, "Trying to use reserved word '%s' as identifier", show_ident(ident)); return; } sym->namespace = ns; sym->next_id = ident->symbols; ident->symbols = sym; if (sym->ident && sym->ident != ident) warning(sym->pos, "Symbol '%s' already bound", show_ident(sym->ident)); sym->ident = ident; sym->bound = 1; scope = block_scope; if (ns == NS_SYMBOL && toplevel(scope)) { unsigned mod = MOD_ADDRESSABLE | MOD_TOPLEVEL; scope = global_scope; if (sym->ctype.modifiers & MOD_STATIC || is_extern_inline(sym)) { scope = file_scope; mod = MOD_TOPLEVEL; } sym->ctype.modifiers |= mod; } if (ns == NS_MACRO) scope = file_scope; if (ns == NS_LABEL) scope = function_scope; bind_scope(sym, scope); } struct symbol *create_symbol(int stream, const char *name, int type, int namespace) { struct token *token = built_in_token(stream, name); struct symbol *sym = alloc_symbol(token->pos, type); bind_symbol(sym, token->ident, namespace); return sym; } static int evaluate_to_integer(struct expression *expr) { expr->ctype = &int_ctype; return 1; } static int evaluate_expect(struct expression *expr) { /* Should we evaluate it to return the type of the first argument? */ expr->ctype = &int_ctype; return 1; } static int arguments_choose(struct expression *expr) { struct expression_list *arglist = expr->args; struct expression *arg; int i = 0; FOR_EACH_PTR (arglist, arg) { if (!evaluate_expression(arg)) return 0; i++; } END_FOR_EACH_PTR(arg); if (i < 3) { sparse_error(expr->pos, "not enough arguments for __builtin_choose_expr"); return 0; } if (i > 3) { sparse_error(expr->pos, "too many arguments for __builtin_choose_expr"); return 0; } return 1; } static int evaluate_choose(struct expression *expr) { struct expression_list *list = expr->args; struct expression *arg, *args[3]; int n = 0; /* there will be exactly 3; we'd already verified that */ FOR_EACH_PTR(list, arg) { args[n++] = arg; } END_FOR_EACH_PTR(arg); *expr = get_expression_value(args[0]) ? *args[1] : *args[2]; return 1; } static int expand_expect(struct expression *expr, int cost) { struct expression *arg = first_ptr_list((struct ptr_list *) expr->args); if (arg) *expr = *arg; return 0; } /* * __builtin_warning() has type "int" and always returns 1, * so that you can use it in conditionals or whatever */ static int expand_warning(struct expression *expr, int cost) { struct expression *arg; struct expression_list *arglist = expr->args; FOR_EACH_PTR (arglist, arg) { /* * Constant strings get printed out as a warning. By the * time we get here, the EXPR_STRING has been fully * evaluated, so by now it's an anonymous symbol with a * string initializer. * * Just for the heck of it, allow any constant string * symbol. */ if (arg->type == EXPR_SYMBOL) { struct symbol *sym = arg->symbol; if (sym->initializer && sym->initializer->type == EXPR_STRING) { struct string *string = sym->initializer->string; warning(expr->pos, "%*s", string->length-1, string->data); } continue; } /* * Any other argument is a conditional. If it's * non-constant, or it is false, we exit and do * not print any warning. */ if (arg->type != EXPR_VALUE) goto out; if (!arg->value) goto out; } END_FOR_EACH_PTR(arg); out: expr->type = EXPR_VALUE; expr->value = 1; expr->taint = 0; return 0; } static struct symbol_op constant_p_op = { .evaluate = evaluate_to_integer, .expand = expand_constant_p }; static struct symbol_op safe_p_op = { .evaluate = evaluate_to_integer, .expand = expand_safe_p }; static struct symbol_op warning_op = { .evaluate = evaluate_to_integer, .expand = expand_warning }; static struct symbol_op expect_op = { .evaluate = evaluate_expect, .expand = expand_expect }; static struct symbol_op choose_op = { .evaluate = evaluate_choose, .args = arguments_choose, }; /* * Builtin functions */ static struct symbol builtin_fn_type = { .type = SYM_FN /* , .variadic =1 */ }; static struct sym_init { const char *name; struct symbol *base_type; unsigned int modifiers; struct symbol_op *op; } eval_init_table[] = { { "__builtin_constant_p", &builtin_fn_type, MOD_TOPLEVEL, &constant_p_op }, { "__builtin_safe_p", &builtin_fn_type, MOD_TOPLEVEL, &safe_p_op }, { "__builtin_warning", &builtin_fn_type, MOD_TOPLEVEL, &warning_op }, { "__builtin_expect", &builtin_fn_type, MOD_TOPLEVEL, &expect_op }, { "__builtin_choose_expr", &builtin_fn_type, MOD_TOPLEVEL, &choose_op }, { NULL, NULL, 0 } }; /* * Abstract types */ struct symbol int_type, fp_type; /* * C types (i.e. actual instances that the abstract types * can map onto) */ struct symbol bool_ctype, void_ctype, type_ctype, char_ctype, schar_ctype, uchar_ctype, short_ctype, sshort_ctype, ushort_ctype, int_ctype, sint_ctype, uint_ctype, long_ctype, slong_ctype, ulong_ctype, llong_ctype, sllong_ctype, ullong_ctype, float_ctype, double_ctype, ldouble_ctype, string_ctype, ptr_ctype, lazy_ptr_ctype, incomplete_ctype, label_ctype, bad_ctype, null_ctype; struct symbol zero_int; #define __INIT_IDENT(str, res) { .len = sizeof(str)-1, .name = str, .reserved = res } #define __IDENT(n,str,res) \ struct ident n = __INIT_IDENT(str,res) #include "ident-list.h" void init_symbols(void) { int stream = init_stream("builtin", -1, includepath); struct sym_init *ptr; #define __IDENT(n,str,res) \ hash_ident(&n) #include "ident-list.h" init_parser(stream); builtin_fn_type.variadic = 1; for (ptr = eval_init_table; ptr->name; ptr++) { struct symbol *sym; sym = create_symbol(stream, ptr->name, SYM_NODE, NS_SYMBOL); sym->ctype.base_type = ptr->base_type; sym->ctype.modifiers = ptr->modifiers; sym->op = ptr->op; } } #define MOD_ESIGNED (MOD_SIGNED | MOD_EXPLICITLY_SIGNED) #define MOD_LL (MOD_LONG | MOD_LONGLONG) static const struct ctype_declare { struct symbol *ptr; enum type type; unsigned long modifiers; int *bit_size; int *maxalign; struct symbol *base_type; } ctype_declaration[] = { { &bool_ctype, SYM_BASETYPE, MOD_UNSIGNED, &bits_in_bool, &max_int_alignment, &int_type }, { &void_ctype, SYM_BASETYPE, 0, NULL, NULL, NULL }, { &type_ctype, SYM_BASETYPE, MOD_TYPE, NULL, NULL, NULL }, { &incomplete_ctype,SYM_BASETYPE, 0, NULL, NULL, NULL }, { &bad_ctype, SYM_BASETYPE, 0, NULL, NULL, NULL }, { &char_ctype, SYM_BASETYPE, MOD_SIGNED | MOD_CHAR, &bits_in_char, &max_int_alignment, &int_type }, { &schar_ctype, SYM_BASETYPE, MOD_ESIGNED | MOD_CHAR, &bits_in_char, &max_int_alignment, &int_type }, { &uchar_ctype, SYM_BASETYPE, MOD_UNSIGNED | MOD_CHAR, &bits_in_char, &max_int_alignment, &int_type }, { &short_ctype, SYM_BASETYPE, MOD_SIGNED | MOD_SHORT, &bits_in_short, &max_int_alignment, &int_type }, { &sshort_ctype, SYM_BASETYPE, MOD_ESIGNED | MOD_SHORT, &bits_in_short, &max_int_alignment, &int_type }, { &ushort_ctype, SYM_BASETYPE, MOD_UNSIGNED | MOD_SHORT, &bits_in_short, &max_int_alignment, &int_type }, { &int_ctype, SYM_BASETYPE, MOD_SIGNED, &bits_in_int, &max_int_alignment, &int_type }, { &sint_ctype, SYM_BASETYPE, MOD_ESIGNED, &bits_in_int, &max_int_alignment, &int_type }, { &uint_ctype, SYM_BASETYPE, MOD_UNSIGNED, &bits_in_int, &max_int_alignment, &int_type }, { &long_ctype, SYM_BASETYPE, MOD_SIGNED | MOD_LONG, &bits_in_long, &max_int_alignment, &int_type }, { &slong_ctype, SYM_BASETYPE, MOD_ESIGNED | MOD_LONG, &bits_in_long, &max_int_alignment, &int_type }, { &ulong_ctype, SYM_BASETYPE, MOD_UNSIGNED | MOD_LONG, &bits_in_long, &max_int_alignment, &int_type }, { &llong_ctype, SYM_BASETYPE, MOD_SIGNED | MOD_LL, &bits_in_longlong, &max_int_alignment, &int_type }, { &sllong_ctype, SYM_BASETYPE, MOD_ESIGNED | MOD_LL, &bits_in_longlong, &max_int_alignment, &int_type }, { &ullong_ctype, SYM_BASETYPE, MOD_UNSIGNED | MOD_LL, &bits_in_longlong, &max_int_alignment, &int_type }, { &float_ctype, SYM_BASETYPE, 0, &bits_in_float, &max_fp_alignment, &fp_type }, { &double_ctype, SYM_BASETYPE, MOD_LONG, &bits_in_double, &max_fp_alignment, &fp_type }, { &ldouble_ctype, SYM_BASETYPE, MOD_LONG | MOD_LONGLONG, &bits_in_longdouble, &max_fp_alignment, &fp_type }, { &string_ctype, SYM_PTR, 0, &bits_in_pointer, &pointer_alignment, &char_ctype }, { &ptr_ctype, SYM_PTR, 0, &bits_in_pointer, &pointer_alignment, &void_ctype }, { &null_ctype, SYM_PTR, 0, &bits_in_pointer, &pointer_alignment, &void_ctype }, { &label_ctype, SYM_PTR, 0, &bits_in_pointer, &pointer_alignment, &void_ctype }, { &lazy_ptr_ctype, SYM_PTR, 0, &bits_in_pointer, &pointer_alignment, &void_ctype }, { NULL, } }; #undef MOD_LL #undef MOD_ESIGNED void init_ctype(void) { const struct ctype_declare *ctype; for (ctype = ctype_declaration ; ctype->ptr; ctype++) { struct symbol *sym = ctype->ptr; unsigned long bit_size = ctype->bit_size ? *ctype->bit_size : -1; unsigned long maxalign = ctype->maxalign ? *ctype->maxalign : 0; unsigned long alignment = bits_to_bytes(bit_size + bits_in_char - 1); if (alignment > maxalign) alignment = maxalign; sym->type = ctype->type; sym->bit_size = bit_size; sym->ctype.alignment = alignment; sym->ctype.base_type = ctype->base_type; sym->ctype.modifiers = ctype->modifiers; } }