diff options
author | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-06-28 08:49:23 -0500 |
---|---|---|
committer | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-08-19 16:46:41 -0500 |
commit | c50eee19c447d3f2c182dc3a22f2b01a053dca41 (patch) | |
tree | 3b5f0d5c832bad20fce31502026f27fd6915ea8f /math/k_casinh_template.c | |
parent | Prepare to convert _Complex sine functions (diff) | |
download | glibc-c50eee19c447d3f2c182dc3a22f2b01a053dca41.tar.gz glibc-c50eee19c447d3f2c182dc3a22f2b01a053dca41.tar.bz2 glibc-c50eee19c447d3f2c182dc3a22f2b01a053dca41.zip |
Convert _Complex sine functions to generated code
Refactor s_c{,a}sin{,h}{f,,l} into a single templated
macro.
Diffstat (limited to 'math/k_casinh_template.c')
-rw-r--r-- | math/k_casinh_template.c | 181 |
1 files changed, 88 insertions, 93 deletions
diff --git a/math/k_casinh_template.c b/math/k_casinh_template.c index 354dde1f3e..74626b1b3f 100644 --- a/math/k_casinh_template.c +++ b/math/k_casinh_template.c @@ -1,6 +1,6 @@ -/* Return arc hyperbole sine for double value, with the imaginary part - of the result possibly adjusted for use in computing other - functions. +/* Return arc hyperbolic sine for a complex float type, with the + imaginary part of the result possibly adjusted for use in + computing other functions. Copyright (C) 1997-2016 Free Software Foundation, Inc. This file is part of the GNU C Library. @@ -27,18 +27,18 @@ with the imaginary part of the result subtracted from pi/2 if ADJ is nonzero. */ -__complex__ double -__kernel_casinh (__complex__ double x, int adj) +CFLOAT +M_DECL_FUNC (__kernel_casinh) (CFLOAT x, int adj) { - __complex__ double res; - double rx, ix; - __complex__ double y; + CFLOAT res; + FLOAT rx, ix; + CFLOAT y; /* Avoid cancellation by reducing to the first quadrant. */ - rx = fabs (__real__ x); - ix = fabs (__imag__ x); + rx = M_FABS (__real__ x); + ix = M_FABS (__imag__ x); - if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON) + if (rx >= 1 / M_EPSILON || ix >= 1 / M_EPSILON) { /* For large x in the first quadrant, x + csqrt (1 + x * x) is sufficiently close to 2 * x to make no significant @@ -49,162 +49,157 @@ __kernel_casinh (__complex__ double x, int adj) if (adj) { - double t = __real__ y; - __real__ y = __copysign (__imag__ y, __imag__ x); + FLOAT t = __real__ y; + __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); __imag__ y = t; } - res = __clog (y); - __real__ res += M_LN2; + res = M_SUF (__clog) (y); + __real__ res += (FLOAT) M_MLIT (M_LN2); } - else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0) + else if (rx >= M_LIT (0.5) && ix < M_EPSILON / 8) { - double s = __ieee754_hypot (1.0, rx); + FLOAT s = M_HYPOT (1, rx); - __real__ res = __ieee754_log (rx + s); + __real__ res = M_LOG (rx + s); if (adj) - __imag__ res = __ieee754_atan2 (s, __imag__ x); + __imag__ res = M_ATAN2 (s, __imag__ x); else - __imag__ res = __ieee754_atan2 (ix, s); + __imag__ res = M_ATAN2 (ix, s); } - else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5) + else if (rx < M_EPSILON / 8 && ix >= M_LIT (1.5)) { - double s = __ieee754_sqrt ((ix + 1.0) * (ix - 1.0)); + FLOAT s = M_SQRT ((ix + 1) * (ix - 1)); - __real__ res = __ieee754_log (ix + s); + __real__ res = M_LOG (ix + s); if (adj) - __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); + __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); else - __imag__ res = __ieee754_atan2 (s, rx); + __imag__ res = M_ATAN2 (s, rx); } - else if (ix > 1.0 && ix < 1.5 && rx < 0.5) + else if (ix > 1 && ix < M_LIT (1.5) && rx < M_LIT (0.5)) { - if (rx < DBL_EPSILON * DBL_EPSILON) + if (rx < M_EPSILON * M_EPSILON) { - double ix2m1 = (ix + 1.0) * (ix - 1.0); - double s = __ieee754_sqrt (ix2m1); + FLOAT ix2m1 = (ix + 1) * (ix - 1); + FLOAT s = M_SQRT (ix2m1); - __real__ res = __log1p (2.0 * (ix2m1 + ix * s)) / 2.0; + __real__ res = M_LOG1P (2 * (ix2m1 + ix * s)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (rx, __copysign (s, __imag__ x)); + __imag__ res = M_ATAN2 (rx, M_COPYSIGN (s, __imag__ x)); else - __imag__ res = __ieee754_atan2 (s, rx); + __imag__ res = M_ATAN2 (s, rx); } else { - double ix2m1 = (ix + 1.0) * (ix - 1.0); - double rx2 = rx * rx; - double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); - double d = __ieee754_sqrt (ix2m1 * ix2m1 + f); - double dp = d + ix2m1; - double dm = f / dp; - double r1 = __ieee754_sqrt ((dm + rx2) / 2.0); - double r2 = rx * ix / r1; - - __real__ res = __log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0; + FLOAT ix2m1 = (ix + 1) * (ix - 1); + FLOAT rx2 = rx * rx; + FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); + FLOAT d = M_SQRT (ix2m1 * ix2m1 + f); + FLOAT dp = d + ix2m1; + FLOAT dm = f / dp; + FLOAT r1 = M_SQRT ((dm + rx2) / 2); + FLOAT r2 = rx * ix / r1; + + __real__ res = M_LOG1P (rx2 + dp + 2 * (rx * r1 + ix * r2)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (rx + r1, __copysign (ix + r2, - __imag__ x)); + __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, __imag__ x)); else - __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); + __imag__ res = M_ATAN2 (ix + r2, rx + r1); } } - else if (ix == 1.0 && rx < 0.5) + else if (ix == 1 && rx < M_LIT (0.5)) { - if (rx < DBL_EPSILON / 8.0) + if (rx < M_EPSILON / 8) { - __real__ res = __log1p (2.0 * (rx + __ieee754_sqrt (rx))) / 2.0; + __real__ res = M_LOG1P (2 * (rx + M_SQRT (rx))) / 2; if (adj) - __imag__ res = __ieee754_atan2 (__ieee754_sqrt (rx), - __copysign (1.0, __imag__ x)); + __imag__ res = M_ATAN2 (M_SQRT (rx), M_COPYSIGN (1, __imag__ x)); else - __imag__ res = __ieee754_atan2 (1.0, __ieee754_sqrt (rx)); + __imag__ res = M_ATAN2 (1, M_SQRT (rx)); } else { - double d = rx * __ieee754_sqrt (4.0 + rx * rx); - double s1 = __ieee754_sqrt ((d + rx * rx) / 2.0); - double s2 = __ieee754_sqrt ((d - rx * rx) / 2.0); + FLOAT d = rx * M_SQRT (4 + rx * rx); + FLOAT s1 = M_SQRT ((d + rx * rx) / 2); + FLOAT s2 = M_SQRT ((d - rx * rx) / 2); - __real__ res = __log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0; + __real__ res = M_LOG1P (rx * rx + d + 2 * (rx * s1 + s2)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (rx + s1, __copysign (1.0 + s2, - __imag__ x)); + __imag__ res = M_ATAN2 (rx + s1, M_COPYSIGN (1 + s2, __imag__ x)); else - __imag__ res = __ieee754_atan2 (1.0 + s2, rx + s1); + __imag__ res = M_ATAN2 (1 + s2, rx + s1); } } - else if (ix < 1.0 && rx < 0.5) + else if (ix < 1 && rx < M_LIT (0.5)) { - if (ix >= DBL_EPSILON) + if (ix >= M_EPSILON) { - if (rx < DBL_EPSILON * DBL_EPSILON) + if (rx < M_EPSILON * M_EPSILON) { - double onemix2 = (1.0 + ix) * (1.0 - ix); - double s = __ieee754_sqrt (onemix2); + FLOAT onemix2 = (1 + ix) * (1 - ix); + FLOAT s = M_SQRT (onemix2); - __real__ res = __log1p (2.0 * rx / s) / 2.0; + __real__ res = M_LOG1P (2 * rx / s) / 2; if (adj) - __imag__ res = __ieee754_atan2 (s, __imag__ x); + __imag__ res = M_ATAN2 (s, __imag__ x); else - __imag__ res = __ieee754_atan2 (ix, s); + __imag__ res = M_ATAN2 (ix, s); } else { - double onemix2 = (1.0 + ix) * (1.0 - ix); - double rx2 = rx * rx; - double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix); - double d = __ieee754_sqrt (onemix2 * onemix2 + f); - double dp = d + onemix2; - double dm = f / dp; - double r1 = __ieee754_sqrt ((dp + rx2) / 2.0); - double r2 = rx * ix / r1; - - __real__ res - = __log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0; + FLOAT onemix2 = (1 + ix) * (1 - ix); + FLOAT rx2 = rx * rx; + FLOAT f = rx2 * (2 + rx2 + 2 * ix * ix); + FLOAT d = M_SQRT (onemix2 * onemix2 + f); + FLOAT dp = d + onemix2; + FLOAT dm = f / dp; + FLOAT r1 = M_SQRT ((dp + rx2) / 2); + FLOAT r2 = rx * ix / r1; + + __real__ res = M_LOG1P (rx2 + dm + 2 * (rx * r1 + ix * r2)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (rx + r1, - __copysign (ix + r2, - __imag__ x)); + __imag__ res = M_ATAN2 (rx + r1, M_COPYSIGN (ix + r2, + __imag__ x)); else - __imag__ res = __ieee754_atan2 (ix + r2, rx + r1); + __imag__ res = M_ATAN2 (ix + r2, rx + r1); } } else { - double s = __ieee754_hypot (1.0, rx); + FLOAT s = M_HYPOT (1, rx); - __real__ res = __log1p (2.0 * rx * (rx + s)) / 2.0; + __real__ res = M_LOG1P (2 * rx * (rx + s)) / 2; if (adj) - __imag__ res = __ieee754_atan2 (s, __imag__ x); + __imag__ res = M_ATAN2 (s, __imag__ x); else - __imag__ res = __ieee754_atan2 (ix, s); + __imag__ res = M_ATAN2 (ix, s); } math_check_force_underflow_nonneg (__real__ res); } else { - __real__ y = (rx - ix) * (rx + ix) + 1.0; - __imag__ y = 2.0 * rx * ix; + __real__ y = (rx - ix) * (rx + ix) + 1; + __imag__ y = 2 * rx * ix; - y = __csqrt (y); + y = M_SUF (__csqrt) (y); __real__ y += rx; __imag__ y += ix; if (adj) { - double t = __real__ y; - __real__ y = __copysign (__imag__ y, __imag__ x); + FLOAT t = __real__ y; + __real__ y = M_COPYSIGN (__imag__ y, __imag__ x); __imag__ y = t; } - res = __clog (y); + res = M_SUF (__clog) (y); } /* Give results the correct sign for the original argument. */ - __real__ res = __copysign (__real__ res, __real__ x); - __imag__ res = __copysign (__imag__ res, (adj ? 1.0 : __imag__ x)); + __real__ res = M_COPYSIGN (__real__ res, __real__ x); + __imag__ res = M_COPYSIGN (__imag__ res, (adj ? 1 : __imag__ x)); return res; } |